Predictive learning models for concept drift

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Predictive Learning Models for Concept Drift

Concept drift means that the concept about which data is obtained may shift from time to time, each time after some minimum permanence. Except for this minimum permanence, the concept shifts may not have to satisfy any further requirements and may occur infinitely often. Within this work is studied to what extent it is still possible to predict or learn values for a data sequence produced by dr...

متن کامل

Predictive Learning Models for Concept

Concept drift means that the concept about which data is obtained may shift from time to time, each time after some minimum permanence. Except for this minimum permanence, the concept shifts may not have to satisfy any further requirements and may occur innnitely often. Within this work is studied to what extent it is still possible to predict or learn values for a data sequence produced by dri...

متن کامل

Concept drift detection in business process logs using deep learning

Process mining provides a bridge between process modeling and analysis on the one hand and data mining on the other hand. Process mining aims at discovering, monitoring, and improving real processes by extracting knowledge from event logs. However, as most business processes change over time (e.g. the effects of new legislation, seasonal effects and etc.), traditional process mining techniques ...

متن کامل

Sparse Population Code Models of Word Learning in Concept Drift

Computational modeling has served a powerful tool for studying cross-situational word learning. Previous research has focused on convergence behaviors in a static environment, ignoring dynamic cognitive aspects of concept change. Here we investigate concept drift in word learning in story-telling situations. Informed by findings in cognitive neuroscience, we hypothesize that a large ensemble of...

متن کامل

A Meta-learning Method for Concept Drift

The knowledge hidden in evolving data may change with time, this issue is known as concept drift. It often causes a learning system to decrease its prediction accuracy. Most existing techniques apply ensemble methods to improve learning performance on concept drift. In this paper, we propose a novel meta learning approach for this issue and develop a method: Multi-Step Learning (MSL). In our me...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Theoretical Computer Science

سال: 2001

ISSN: 0304-3975

DOI: 10.1016/s0304-3975(00)00274-7